Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38659958

ABSTRACT

GDF15 (growth differentiation factor 15) is a marker of cellular energetic stress linked to physical-mental illness, aging, and mortality. However, questions remain about its dynamic properties and measurability in human biofluids other than blood. Here, we examine the natural dynamics and psychobiological regulation of plasma and saliva GDF15 in four human studies representing 4,749 samples from 188 individuals. We show that GDF15 protein is detectable in saliva (8% of plasma concentration), likely produced by salivary glands secretory duct cells. Using a brief laboratory socio-evaluative stressor paradigm, we find that psychosocial stress increases plasma (+3.5-5.9%) and saliva GDF15 (+43%) with distinct kinetics, within minutes. Moreover, saliva GDF15 exhibits a robust awakening response, declining by ~40-89% within 30-45 minutes from its peak level at the time of waking up. Clinically, individuals with genetic mitochondrial OxPhos diseases show elevated baseline plasma and saliva GDF15, and post-stress GDF15 levels in both biofluids correlate with multi-system disease severity, exercise intolerance, and the subjective experience of fatigue. Taken together, our data establish that saliva GDF15 is dynamic, sensitive to psychological states, a clinically relevant endocrine marker of mitochondrial diseases. These findings also point to a shared psychobiological pathway integrating metabolic and mental stress.

2.
Nat Commun ; 14(1): 4726, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563104

ABSTRACT

The brain and behavior are under energetic constraints, limited by mitochondrial energy transformation capacity. However, the mitochondria-behavior relationship has not been systematically studied at a brain-wide scale. Here we examined the association between multiple features of mitochondrial respiratory chain capacity and stress-related behaviors in male mice with diverse behavioral phenotypes. Miniaturized assays of mitochondrial respiratory chain enzyme activities and mitochondrial DNA (mtDNA) content were deployed on 571 samples across 17 brain areas, defining specific patterns of mito-behavior associations. By applying multi-slice network analysis to our brain-wide mitochondrial dataset, we identified three large-scale networks of brain areas with shared mitochondrial signatures. A major network composed of cortico-striatal areas exhibited the strongest mitochondria-behavior correlations, accounting for up to 50% of animal-to-animal behavioral differences, suggesting that this mito-based network is functionally significant. The mito-based brain networks also overlapped with regional gene expression and structural connectivity, and exhibited distinct molecular mitochondrial phenotype signatures. This work provides convergent multimodal evidence anchored in enzyme activities, gene expression, and animal behavior that distinct, behaviorally-relevant mitochondrial phenotypes exist across the male mouse brain.


Subject(s)
DNA, Mitochondrial , Mitochondria , Male , Mice , Animals , Mitochondria/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Brain/metabolism , Phenotype
3.
Science ; 380(6649): eabn9257, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37289866

ABSTRACT

Aging is associated with changes in circulating levels of various molecules, some of which remain undefined. We find that concentrations of circulating taurine decline with aging in mice, monkeys, and humans. A reversal of this decline through taurine supplementation increased the health span (the period of healthy living) and life span in mice and health span in monkeys. Mechanistically, taurine reduced cellular senescence, protected against telomerase deficiency, suppressed mitochondrial dysfunction, decreased DNA damage, and attenuated inflammaging. In humans, lower taurine concentrations correlated with several age-related diseases and taurine concentrations increased after acute endurance exercise. Thus, taurine deficiency may be a driver of aging because its reversal increases health span in worms, rodents, and primates and life span in worms and rodents. Clinical trials in humans seem warranted to test whether taurine deficiency might drive aging in humans.


Subject(s)
Aging , Taurine , Animals , Humans , Mice , Aging/blood , Aging/drug effects , Aging/metabolism , Cellular Senescence , Haplorhini , Longevity/drug effects , Longevity/physiology , Taurine/blood , Taurine/deficiency , Taurine/pharmacology , Dietary Supplements , DNA Damage/drug effects , Telomerase/metabolism
4.
Phys Rev E ; 96(6-1): 062130, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29347298

ABSTRACT

Brownian systems often surmount energy barriers by absorbing and emitting heat to and from their local environment. Usually, the temperature gradients created by this heat exchange are assumed to dissipate instantaneously. Here we relax this assumption to consider the case where Brownian dynamics on a time-independent potential can lead to self-induced temperature gradients. In the same way that externally imposed temperature gradients can cause directed motion, these self-induced gradients affect the dynamics of the Brownian system. The result is a coupling between the local environment and the Brownian subsystem. We explore the resulting dynamics and thermodynamics of these coupled systems and develop a robust method for numerical simulation. In particular, by focusing on one-dimensional situations, we show that self-induced temperature gradients reduce barrier-crossing rates. We also consider a heat engine and a heat pump based on temperature gradients induced by a Brownian system in a nonequilibrium potential.

5.
Proc Natl Acad Sci U S A ; 113(40): 11272-11276, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27638211

ABSTRACT

Learning to read involves the acquisition of letter-sound relationships (i.e., decoding skills) and the ability to visually recognize words (i.e., orthographic knowledge). Although decoding skills are clearly human-unique, given they are seated in language, recent research and theory suggest that orthographic processing may derive from the exaptation or recycling of visual circuits that evolved to recognize everyday objects and shapes in our natural environment. An open question is whether orthographic processing is limited to visual circuits that are similar to our own or a product of plasticity common to many vertebrate visual systems. Here we show that pigeons, organisms that separated from humans more than 300 million y ago, process words orthographically. Specifically, we demonstrate that pigeons trained to discriminate words from nonwords picked up on the orthographic properties that define words and used this knowledge to identify words they had never seen before. In addition, the pigeons were sensitive to the bigram frequencies of words (i.e., the common co-occurrence of certain letter pairs), the edit distance between nonwords and words, and the internal structure of words. Our findings demonstrate that visual systems organizationally distinct from the primate visual system can also be exapted or recycled to process the visual word form.


Subject(s)
Columbidae/physiology , Language , Pattern Recognition, Visual , Animals , Humans , Papio
6.
Opt Lett ; 38(14): 2629-31, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23939131

ABSTRACT

Low-frequency electric fields propagating in ex vivo biological tissues have been observed by using double-correlation optical coherence tomography (OCT). An adaptive Wiener filtering approach has been used to remove background noise, and a Fourier domain correlation algorithm has been applied to the sequence of OCT images. The results present the first direct observation (to our knowledge) of the scope of the electric field influencing biological tissues with OCT. The results show that variation in voltage and frequency of the applied electric field relates exponentially to the magnitude of its influence on biological tissue. The magnitude of influence is about twice more for fresh tissue samples in comparison to nonfresh ones. The obtained results suggest that OCT can be used for observation and quantitative evaluation of the electrokinetic changes in biological tissues under different physiological conditions, functional electrical stimulation, and food quality control.


Subject(s)
Electricity , Tomography, Optical Coherence/methods , Animals , Chickens , Image Processing, Computer-Assisted , Meat , Optical Phenomena
7.
Rev Sci Instrum ; 83(4): 044303, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22559554

ABSTRACT

We have developed an isolated continuous-waveform constant-current physiological stimulator that is powered and controlled by universal serial bus (USB) interface. The stimulator is composed of a custom printed circuit board (PCB), 16-MHz MSP430F2618 microcontroller with two integrated 12-bit digital to analog converters (DAC0, DAC1), high-speed H-Bridge, voltage-controlled current source (VCCS), isolated USB communication and power circuitry, two isolated transistor-transistor logic (TTL) inputs, and a serial 16 × 2 character liquid crystal display. The stimulators are designed to produce current stimuli in the range of ±15 mA indefinitely using a 20V source and to be used in ex vivo cardiac experiments, but they are suitable for use in a wide variety of research or student experiments that require precision control of continuous waveforms or synchronization with external events. The device was designed with customization in mind and has features that allow it to be integrated into current and future experimental setups. Dual TTL inputs allow replacement by two or more traditional stimulators in common experimental configurations. The MSP430 software is written in C++ and compiled with IAR Embedded Workbench 5.20.2. A control program written in C++ runs on a Windows personal computer and has a graphical user interface that allows the user to control all aspects of the device.


Subject(s)
Electric Conductivity , Electric Stimulation/instrumentation , Animals , Arrhythmias, Cardiac/physiopathology , Computer Graphics , Rabbits , Reproducibility of Results , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...